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In this paper, we characterize those functions that are conditionally positive
definite on Euclidean spaces ~d for all d= 1. 2•...• as certain Laplace-Stieltjes
integrals. r: 1993 Academic Press. Inc.

INTRODUCTION

Let C( [Rd) denote the set of all continuous complex-valued functions on
[Rd. A function f E C( [Rd) is said to be positive on [Rd if for any n complex
numbers CI'C 2, ... , Cn and any n points Xl' X 2 , ... , X n in [Rd, we have

n n

I I cjCJ(xj-xj)?:O.
i~ 1 j~ 1

Let k be a nonnegative integer, and let I1d[Rd) denote the set of all
d-variable polynomials of degree k or less. A function f E C( [Rd) is said to
be conditionally positive definite of order k(k?: 1) on [Rd, if for any n com­
plex numbers C1, C2' ... , Cn and any n points XI' X 2 , ... , X n in [Rd satisfying

L cjp(xi)=O
i~ 1

we have

n n
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We denote the set of all positive definite functions on ~d by p(~d) and
the set of all conditionally positive functions of order k on ~d by CPk(~d).

We recall that a function h defined on (0, 00) is said to be completely
monotone on (0, ex:) if (_I)m j(m)(t) ~°for all t > °and m = 0, 1,2, ....
The well-known Bernstein~WidderTheorem [W] asserts that a function h
is completely monotone on (0, ex:) if and only if h has the Laplace~Stieltjes

integral representation

h(t) = ()': e- tu da(u), t > 0,

where a(u) is a positive Borel measure on (0,00). Following Schoenberg
[S], we denote by Jt the set of functions which belong to C[O, ex;,) and are
completely monotone on (0, ex:).

Let X:=(Xl, ...,Xd)E~d, denote the Euclidean norm of x by lxi, i.e.,
Ixl = (xi + ... + X~)1!2. It follows from the Bernstein~Widder Theorem
that if h E Jt then the function H(x) := h( Ix1 2) is positive definite on ~d for
all d = 1, 2, .... Remarkably, Schoenberg [S] proved that the converse of
this result is true. In the same paper, Schoenberg also proved the following
result: In order that the functions H(x) = h( IX 1

2
) be conditionally positive

definite of order I on ~d for all d = 1, 2, ... , it is necessary and sufficient that
( - 1) h' be completely monotone on (0, ex;,).

Schoenberg's results find applications in a wide range of mathematics;
see Berg et al. [BCR], Donoghue [D], and Wells and Williams [WW].

Michelli [M] proved that if hEC[O,ex:), and for some k=I,2,oo.,
(_I)kh(k) is completely monotone on (0,00), then H(x)=h(lxI 2)E

CPk(~d) for all d= 1,2, .... Michelli conjectured that the converse of this
result is also true. Actually Michelli gave a simple proof of the converse for
k = 1. We note that while Michelli's results were established in an elegant
way, the converse for the case k> 1 has remained unsettled for the last
several years. Careful examination reveals that some basic differences exist
between the case k = 1 and the case k > 1. The lack of proof for this
important case was also mentioned by Narcowich and Ward [NW].

The purpose of this paper is to give a complete proof to the converse of
Micchelli's theorem. Thus, part of Schoenberg's beautiful theory of positive
definite functions on metric spaces is extended to conditionally positive
definite functions. We start in Section 1 with the development of integral
representations for radial conditionally positive definite functions. The
main result is proved in Section 2. In Section 3, we point out some
distinctions between the cases k = 1 and k > 1.



LAPLACE-STIELTJES INTEGRALS

1. NOTATIONS AND PRELIMINARIES
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Let d be a positive integer, x = (x I' ... , Xd) E jRd and ~ = (~l' ..., ~d) E jRd.

Let S( jRd) denote the space of Schwartz class functions and S'( jRd) be the
dual space of S(jRd). For lp E S(jRd), we define its Fourier transform lp(O
by the formula

'(;::) - 1 f -i~x ( ) d .lp.. - -2d" e lp x .t,
( n) - Rd

where ~x denotes the usual inner product on jRd, i.e., ~x = L1~ I ~iXi' It is
well-known that if lp E S(lRd ), then c,O E S( jRd) and the following Fourier
inversion formula holds:

Also, for lp, r/J E S( jRd), we define the inner product of lp and r/J

1 f -<lp, l/J >d=-2di2 lp(x) l/J(x) dx.
( n)·· Rd

The following Parseval identity holds for all lp, l/J E S(jRd)

Let K( [Rd) denote the space of all infinitely differentiable functions on jRd
with compact supports and K'([Rd) its dual space. Following Gelfand and
Vilenkin [GVJ, we denote the image of K(jRd) under the Fourier transform
by Z(jRd), the dual space of Z([Rd) by Z'(jRd). An element of the spaces
K(lR d

), S(lR d
), and Z(jRd) is henceforth called a test function, and an

element of their dual spaces called a distribution. We also use the notation
< T, lp >d to denote the action of a distribution T on a test function lp, as
no confusion is likely to occur. For TE S'(jRd), we define its Fourier
transform according to the following equation

For T E K'([Rd), the Fourier transform T is defined as an element of Z'(jRd)
according to the equation

The latter definition is justified by the well-known Paley-Weiner
Theorems; see Yosida [V, p. 166].

640·74 )·2
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The following lemma can be verified by using standard limit arguments.

LEMMA 1.1. fECPd~d) if and only if

f f f(x-y)<p(x)<p(y)dx(~v~O
",d ];1d

for all <pEK(~d) that satisfies JRd<P(X) q(x) dx=Ofor all qEnk_I(~d).

Let .i = til' ..., ld) be a nonnegative integer multi-index and denote the
differential operator (fi/dxi by Di. Let p(x) = LUI ~k a/x! be a homogeneous
polynomial of degree k. Then p(D) = Llil ~k a/Di is a linear homogeneous
constant-coefficient differential operator of order k.

DEFINITION 1.2. A functionf(x) in C(~d) is called k-positive definite if

J f f(x-y){p(D)<p(x)}{p(D)<p(y)}dxdy~O
[Ret [Rd

for all <p E K( ~d) and all linear homogeneous constant-coefficient differen­
tial operators p(D) of order k.

LEMMA 1.3. Iff E CPk(~d), then f is k-positive definite.

Pro(~f This follows from the simple fact that if <p(x) = p(D) ljJ(x) with
l/J E K(~d) and p(D) a linear homogeneous constant-coefficient differential
operator of order k, then, an application of Fubini's theorem and integra­
tion by parts show that S];1d <p(x) q(x) dx = 0 for all polynomials q(x) of
degree ~k - 1. I

Remark 1.4. Madych and Nelson [MN] proved the stronger result
that! E CPk( ~d) if and only iff is k-positive definite. In this paper, we only
need the sufficiently part of their result which is Lemma 1.3.

The following result can be found in Gelfand and Vilenkin [GV,
Theorem 1', p. 179].

LEMMA 1.5'. Let f he k-positive definite. Then, for any <p E K(~d), the
following identity is true:
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where Q o = [Rd\ {O}, and J1.d is a tempered positive Borel measure on Q o,

independent of qJ, such that f0 < 1(1 ,;; I I(1 2k dJ1.A () <Xl; rt(0 is G function
in Z([R") such that 0((~)-1 has a zero of order 2k+l at ~=O;

aj = <!,O(( () ~i>d for Iii < 2k; the numbers ai' Iii = 2k, are such that the
Hermitian form Llil = I.JI = k ai+j~i~J is positive definite.

For technical reasons, we need the following slightly different version of
the above lemma, which can be proved by the same argument.

LEMMA 1.5. Let f be k-positive definite, and let rt( ~) E Z( [Rd) be such that
0(( 0 - 1 has a zero of order 2k at ~ = O. Then, for any qJ E K( [R"), the
follmring identity is true:

where J1." is a tempered positive Borel measure on Q o such that
fo< );),;; 1 1~12k dJ1.,,(~) < Xl; Gj = <,/,0((0 ~i>" for Iii < 2k; the numbers aj,
Iii =2k, are such that the Hermitian form Llil~lil~kai+J(l; is positive
definite.

LEMMA 1.6. Let aj' Iii = 2k, be the numbers in Lemma 1.5. Then the
following relation holds true:

(3 )

Proof. The equality part is obvious. The inequality follows from the
fact that for all Iii = k, a2i are nonnegative since they are on the main
diagonal of the semi-positive definite matrix (ai+j)lil = Iii ~k· I

Let w d _ I be the area of the unit sphere S"_1 of [R" and let

where d(J denotes the usual measure on S,,_ 1. Then Q" is radial and hence
we can write QAt) = I/W d _ 1 JSd 1 eitxO" d(J, where X o is a fixed unit vector
in [R" and t = Ixl.
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LEMMA 1.7. The following results about the function Q d are true:

OC ( _ 1)/ t 2/

(i) Qd(t)=/~0(2l)!!fl;~~(d+2s)' tE[O,OO),

(ii) lim Qd(t fid) = e- t2 uniformly for t E [0,(0),
d -J> OC'

(iii) IQ~m)(t)1 ~ C(d, m)(1 + t) -ld-l)/2, tE(O, oo),m=O, 1,2, ....

C(d, m) is some constant depending only on d and m.

Proof Parts (i) and (ii) were proved by Schoenberg [S]. Part (iii)
follows from a smooth partition of unity for Sd _ I and integration by parts;
see Littman [L]. I

Lemma 1.5 gives a distributional expression for k-positive definite
functions. In the proof of our main result, we need the following integral
representation of k-positive definite radial functions.

THEOREM 1.8. If g is k-positive definite and radial on [Rd, then for each
x E [Rd, we have

'XJ( k-l (-I)'r 2/lxI 2
' ) --2k

g(lxl)=t QAlxl r)-a(r) /~o (21)!!fl;~~ (d+2s) r df3Ar)

k - I (1 )/'" - <. ()"'> I 12
/+ /::0 (2l)!!fl;~~(d+2s) g,CI. r r- d x ,

where

(4)

is an increasing function on [0,(0) satisfying J~ r- 2k df3d(r) < 00, and
(21)!! = 2/(2/- 2)···2.

Proof Select l/J E K([Rd) such that ~(O) = 1. Let (j > 0. We choose
o/«()=o/6«()=e_jX~~«(jO in Eq. (2). Then we have the following:

(ii) lim o/YJ(O) = (e-ix~)(j) «() I~ ~O for all i, with Iii = 0, 1, ..., 2k,
6_0
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The limit in Part (iii) is uniform for I¢I ~ 1.
Since J1.d is a tempered Borel measure and IX E Z(lRd), we see that

(iv) lim f IX(¢) 2'I1~y~~O) ¢j dJ1.d(¢)
,,~O 1,1;;> I Ijl = 0 J.

=f IX(¢) 2ki: 1 (e-iX,)(j) (¢)I ~; dJ1A¢),
1~I;;>l Ijl~O ~=oJ·

(v) lim J ~,,(O dJ1d(¢) =f e~ix~ dJ1d(¢)
b ~ 0 \~\;;> 1 I{I;;> 1

255

for every x, and f1'1;;> I e - ix, dJ1d( ¢) is finite for each x E IR d
•

We point out that (v) is true since

f dttAO < 00
1'1 ;;> I

Here follows a proof of this fact: Take I/I(x) = 0(·) * O( -- .) for some
oE K(lRd

), then 1/1 ~ O. Let ~b(O = 1/1(150. Then we have

g(O)=lim <g'~b>=lim(± Ii)'
b~O "~O i~l

where

12 = f ~b(O dttd(O,
I~I;;> 1

2k-l '(j)(O)
I) =f IX(¢) L~ ¢j dttA¢),

I~I ;;> 1 Ijl ~ 0 } •

and 14 , 15 are the corresponding last two terms in (2) with qJ replaced
by qJb' It is easy to check that

\

2k-l • (j)(O) \
~b(~) - IX(~) L ~~j ~ C \~12k

Ijl ~O J.

for all I¢I ~ I, and some constant C independent of b.
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(6)

Therefore, II has a finite limit as <5 -> 0, so do 13 , 14 , and Is as can be
proved easily. Consequestly, limo~OSI¢I;'lcPo(Odlld(O is finite. Since
cPo -> 1 and is positive, we have

L dlld(O<XJ
1,1;, I

(vi) lim f cPo(O dlld(~) = f e- 1x¢dlld(~)
b ~ 0 I¢I;, L I¢I;, I

for every x, and SI¢I;, I e Ix ¢ dlld(O is finite for each x E [Rd.
From the above limit relations we see that if we choose cP = cPo in Eq. (2)

and let <5 -> 0 +, then we get

g(x)= f (e-lx~-:x(O 2I 1 (e-iX~)(j)(~)1 ~;)dlld(O
Qo Iii = 0 ~ = 0 J .

2k - 1 I 1+L: (g, :x(0 ~i)(e-I\~)U)(~), ~

I/I~O ,~oJ

(e-iX~)U) (~= 0) - aUl(O)
+ L ai .,' (5)

Iii = 2k J.

It foIlows from Proposition 2.2 in [MN] that Ig(x)1 ~ M(lxl 2k + 1) for
some M>O and all xElR d. Hence, gES'([Rd). Since Z([Rd) is dense in
S'([Rd), it is not difficult to see that Eq. (2) still holds true for functions
a(x) and cp(x) in S([Rd) as long as g E S'([Rd) and a(x) -1 has a zero of
order 2k at x = O. Therefore, we may choose

2 k - I X 21

IX(X) = e- X L -If'
I~O •

which is radial and IX(X) - 1 has a zero of order 2k at x = O. The fact that
g is radial implies

-1-f g(lxl w)dw=g(lxl).
W d _ I S<1-1

Therefore, by Eq. (5) and series expansion of the function Q d in (1) of
Lemma 1.7, we have

'x' ( k-I (_I)l r2/(xI
21

) -2k

g(lxJ) = L Qd(lxl r)-a(r) I~O (21)!1 n::~) (d+2s) r df3Ar)

k - 1 ( _ 1)1

+ I~O (20l! n::~ (d+ 2s) (g,:x(r) r
2/

)d I.xfl

(r 2k )U)(0)( (_1)kl x I2k )
+ L ai . , (21) II n k - 1 (d 2) + 1

1/1 ~ 2k J . . . s ~ 0 + s

where f3Ar) = So < I¢I '" r 1~12k dlld(O for r > O.
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Then Ad~O by Lemma 1.6. Define fld(O) :=Iimr~o+ fJr(r)-A d. Then
fJd(r) is increasing on [0, oc), and we can rewrite Equation (6) as

:C( k-I (-I)'r2'lxI 21 ) -2k
g(lxl)= fa Qd(lxl r)-O((r) ,~o (2/)!!n~~~(d+2s) r dfJd(r)

\ ... 1 ( - 1)1 <. () )') I 12'

+ '':0 (2/)!! n:,::~ (d+2s) g,O( r r d x . (7)

Here the last term in Eq. (6) is incorporated in the integral in Eq. (7) by
the mass of dfJd at r = 0.

By the facts that fO<I¢I':;II~12kdJld(O<OCand that Jld is a tempered
measure, we see that fJd(r) is finite for each r > 0. The conclusion
f; r- 2k dfJd(r) < CD follows from the fact that SI~I;'1 dJld(O < 00. This
finishes the proof of the theorem. I

2. THE MAIN THEOREM

THEOREM 2.1. Given a continuous function f(t) on [0, + oc), let
g( t) = f(t2). The following two statements are equivalent.

(a) g(lxl)ECpk(lRd)jor all positive integers d.

(b) f(m)(t) exists for all positive integers m and all tE(O, +oc), and
furthermore, (_I)k f<kl(t) is completely monotone on (0, +XJ).

Remark 2.2. (b) =(a) was proved by Micchelli [M] and the case k = 1
of the part (a) =(b) was done by Schoenberg [S].

We need to establish several lemmas, which require d be relatively large.
But for the convenience of presentation, we take d = 8k + I.

LEMMA 2.3. Let g be k-positive definite and radial on R 8k + I. Then for
each positive integer m with °~ m ~ 4k, g(m)( t) exists and satisfies

(8)

where C(m) is a constant depending only on m.
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Proof We will use the same letter C to stand for different constants
depending on m. Here we give the proof only for °~ m ~ 2k. The case
2k < m ~ 4k can be treated in the same way.

In Eq. (6), we replace Ixl by t. Then from Part (iii) of Lemma 1.7, we
have lim)(t)I~C(I+t2k m) for tE[I, +(0). So, Inequality (8) will be
proved if we can show that Ig(m)(t)1 ~ Ct - 4k for t E (0, I). For this purpose,
we write

It is easy to see that 11,1 ~C, and 113 1 ~ C for tE(O, I). To control 12 , it
suffices to control

By Part (iii) of Lemma 1.7 again, we have for, t E (0, I),

= Ct- 4k JW r-(4k-m)r- 2k dfJAr) ~ Ct- 4k. I
1

LEMMA 2.4. Let g be as in Lemma 2.3 and let f(t) = g( t '/2). Then for
O~m~4k, we have

(9)

Proof Write f(t2) = get). Then Inequality (9) follows from Lemma 2.3
with a simple calculation. I

The following lemma can also be verified by a simple calculation which
we omit.
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LEMMA 2.5. Let f and g be functions of t such that g(t) = f(t 2). Assume
that fE COC[O, +a::). For d=I,2, ...,xE~d, let t=Ixl. Denotef(j)(s)l'~12

as f(j)( t2). Then, for each positive integer I,

21
(Ll1g)(lxl) = (2d)1 f(l)(t2) + L qj(d, t2) f(/l(t 2), (10)

j=1

»'here for each 1~ m ~ 2/, qj (d, t2) satisfies

Iqj(d, t2)/(2d)'-1/ ~ Cj(t2' + 1),

where Cj depends only on m.

From Eqs. (9) and (to), we get the following important estimate.

LEMMA 2.6. Let g be k-positive definite and radial on ~d for all integer
d. Then, for 0 ~ I ~ 2k, x E ~d, and d~ 8k + 1, we have

!
(LllgHIXI)!'::::C(1+11-12k+IXI6k)

(2d)' '" I x .,

where C, can he chosen to he independent of the space dimension d.

LEMMA 2.7. Let g be as in Lemma 2.6, and

Set

(
r) _(,.2/2d)k~l r

2
'

;,(d(r)=tx j2d =e '':0 l!(2d)"

Then, for each integer I, 0 ~ I ~ k - I, the following numerical sequence is
bounded:

Proof
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Note that 1+ j ~ 2k. So by Lemma 2.6, it suffices to show

for all d~ 12k+ l.
Using the change of variable (d/2) r 2 = t, we get

dd/2W. I(2)d/2 f"") ( (2) 6k (2 )3k)F = d~l_ - 1+ -{ + -t e- 1t d / 2 - l dt
d (2rc )di2 2 dod d

Here we used the formula

2rc d/2

W d _ 1 = F(d/2)'

We see immediately from Eq. (11) that I d is uniformly bounded for all
d~ 12k + l. I

We are now in the position to prove the main theorem.

Proof of Theorem 2.1. We only need to show that (a) implies (b). Since
g E CPk( [Rd) implies that g is k-positive on [Rd, g has the integral represen­
tation as in Eq. (4). Now we choose IXd(r) = ':I.(r/j2d) to replace ':I.(r) in
Eq. (4). Then, at x=O, we have

By Lemma 2.7, we see that

is uniformly bounded for all d.
Recall that

ok - 1 r21
':I.(r) = e- r

- L ­
/=0 I!'
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It is easy to check the following properties of a(r):

(i) l-a(r)~Oon[O, +(0),

Oi) min [(I-a(r)r- 2k ]>0,
rE (0. I)

(iii) min (1-a(r»>O.
rE [I, +'"1_',)

It follows that both

261

,--,

J
<X df3Ar .J2d

o (2d)k
and

are uniformly bounded for all d. Helly's compactness theorem (see [Z,
p. 137]) insures the existence of a nonnegative and nondecreasing function

p(r), and of a subsequence of {pd(r .J2d)J(2d)k} converging to the func­
tion f3(r) on [0, + (0) at all points of continuity of f3(r). Consequently,
J~ r- 2k df3(r) < 00.

We claim that for (E (0, + (0),

(13)

where a, are some constants for 1=0, I, ..., k - I.
Once Eq. (13) is established, it is clear from the relation f( (2) = g( () that

x (2 k- I (_ I )' r 21(I) k.. 1
f(t) = L e-

tr
- a(r) I~O l! r-

2k
dp(r) + I~a/

Hence, pm)( () exists for each m ~ 1 and (E (0, + (0), and (- 1)k pk/( t) is
completely monotone on (0, + (0). So, in order to prove the theorem, it
remains to verify Eq. (13).

Returning to Eq. (4) with a(r) replaced by ad(r), we have, for
(E (0, + (0),

X( k-J (_I)l r 21(21 )
g(t)=t .Qd(tr)-Cl:d(r) ,~o (2l)!! rt:~ (d+2s) r-

2k
dp,Ar)

k~ 1 ( - 1 )1 <. () 21> (21
+/:-o(21)!!n~-::'~(d+2s) g,Cl:dr r d (14)

By Lemma 2.7, we may assume (passing to a subsequence if necessary) that



262 GUO, HU, AND SUN

for some finite number a l . Thus it suffices to show that for any fixed
(E (0, + 00), there is a subsequence of {d};;:~, such that as d ...... 00, the
integral

converges to the integral

en ( k-, ( 1)1 21 2/)
{~ e- t2r2 -ex(r) I~O - I!r t r- 2k df3(r).

Without loss of generality, we may assume that the whole sequence of
df3Ar y1d)/(2d)k converges to f3(r) on [0, + 00) at all points where the
function p(r) is continuous. Set

and

2 2 . k - I (_ I )1 r21(21
h(r)=e tr -ex(r) L .

I~O I!

In order to prove the above limit relation, we need only to show that for
every e > 0, there is an Nt > 0 such that

f x hd(r)r-2kdf3Ar~2d) fYJ h(r)r-2kdf3(r)l~e (15)
o (2d 0

for all d ~ N,. Here N" depends on e and the fixed (.
Using Part (i) of Lemma 1.7 and the fact that

(2d )1 I
...... -

(2l)!!n~-:~(d+2s) i!
as d ...... 00,

we see that lim d _ Of) hd(r) r-- 2\ uniformly for r E [0, 1]. Also, from Part (ii)
of Lemma 1.7, it is easy to check that limd _ 0:. hd(r) = h(r) uniformly for
r E [1, + 00). Since both

f' df3Ar.j2d
o (2d)k

and f·co r-2k df3Ar.j2d
I (2d)k
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are uniformly bounded for all d, it follows that for the given € > 0, there is
an N[ > °such that

If '" h (r) _2kdf3d(r~2d foo h() _2kdf3d(r-J2d)I~!:. (16)
o d r (2d)k 0 r r (2d)k "" 4

for all d?- N[.
Note that for the fixed tE(O, +00), limr~oo h(r)=O, we see that there is

an M> °such that

!f
OCh() _2kdf3Ar~2d)I~:'

R r r (dd)k "" 4

for all R?-M and d?-N 1• By taking limit in Inequality (17), we get

(17)

(18 )

for all R?- M.
In Inequalities (17) and (18), if we choose R to be a point of continuity

of f3(r), then the Helly's Theorem implies

lim fR h(r) r- 2k df3d(r J!d) foR h(r) r- 2k df3(r).
d~ oc 0 (2d)

Hence, for the given f, > 0, there is an N 2 > 0 such that

for all d?- N 2 •

Thus, Inequality (15) follows from Inequalities (16), (17), (18), and (19)
by choosing N,=max{N 1 , N 2 }. This verifies Identity (13), and therefore
the proof of Theorem 2.1 is complete. I

3. CONCLUDING REMARKS

There are some intimate relationships between positive definite functions
and conditionally negative definite functions of degree 1 (a function f is
called conditionally negative definite of degree 1 if - f is conditionally
positive definite of degree 1). We refer to [BCR, Chap. 3] for a beautiful
illustration of these results. It is very natural to expect that similar rela­
tionships exist between conditionally positive (negative) definite functions
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of degree k and degree k + 1 for k ~ 1. Unfortunately, the attempt was in
vain since there are counter-examples. By direct differentiation, one can
show the well-known result that if I E <It and if g E C[O, x) and g' is com­
pletely monotone on (0, 00), then I g E .It; see Sun [SX, p. 23]. In par­
ticular, for such function g and a number a> 0, the function e -ali belongs
to <It. Using this remarkable result, Schoenberg [S] characterized the class
of functions which are conditionally negative definite of degree 1 on all the
Euclidean spaces [Rd, d = 1, 2,.... (Schoenberg did not use the phrase
"conditionally negative definite," but his "imbedding" language carries the
same meaning). This naturally leads us to consider the following general
setting: IfIE .It and g E CEO, x') such that glk) is completely monotone on
(0, x ), then h lk - I) is completely monotone on (0, x) for h = Ie g. Unfor­
tunately, this is not true even for k = 2. In fact, for I(t) = e " and g(t) = t',
with I < (J. < 2, we have I E <It and g(2) is completely monotone, but h' is
not completely monotone for h = f D g.
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